
Background and Motivations 1

An informal image analysis course

Prof. Raghuveer Parthasarathy

The University of Oregon
Email: raghu@uoregon.edu

Last modified: July 15, 2020

Background and Motivations

In 2014, 2015, and 2016 I taught an informal (“off the books”) course on computational image

analysis. The goal was to help people (1) learn about methods for extracting information from

images, and (2) improve their skills in writing code to implement these methods. The things we

image, the ways we image them, and the assessments we want to make based on images are all

extremely varied, and the ability to develop custom software tailored to specific needs is invaluable.

In addition, familiarity with common image processing methods is useful for planning and

discussing experiments, in part to better assess what tasks are easy or difficult. Rather remarkably,

there are no formal courses on image analysis offered at the University of Oregon as far as I know,

providing additional motivation for this course. The subjects we cover also intersect important

topics in statistics and data analysis, such as maximum likelihood estimation, that are not typically

taught to biology or physics students.

The audience for the course was graduate students, postdocs, and advanced undergraduates

in physics and biology. As it was an informal course (taught outside my usual teaching load), and the

students all had considerable intrinsic motivation, we met just once a week and did not have any

assessments such as quizzes or exams. During the weekly meetings we discussed problems with the

previous week’s topic and assignments, shared results, asked questions, and introduced the next

module. The sessions were quite enjoyable. Approximately 10 people participated each time – the

number would likely be higher if I more actively advertised the course.

This document describes the topics, readings, and assignments for the course. Several

sections need improvement, both so that this will be a more useful stand-alone resource, and so that

I can improve the course next time!

Syllabus 2

Syllabus

Figure 1. Given an image of bacteria (left), how do we accurately determine their positions

(center), and their trajectories across a series of images (right)? Understanding algorithms for
quantitative image analysis lets us perform these and countless other tasks.

Course Goals

Students will learn about a variety of algorithms for computational image analysis and will practice
writing code to implement them. The methods we’ll explore are very broadly applicable in many
areas of science and technology, and we’ll see insights they enable in biophysics, soft condensed
matter physics, microbiology, and perhaps other fields of interest to students. We will also encounter
important topics in statistics and data analysis, such as maximum likelihood estimation, gaining an
understanding of their meaning and utility.

Course structure

Since this is a reading / self-study course, and since I’ve got lots of other things to do, my own
involvement will be rather minimal. We will all meet roughly once a week to introduce topics and
discuss the work of the past week, but students will be expected to read on their own, to initiate
discussions with other students, and to develop implementations of algorithms quite independently.
 We’ll use a Google Drive folder to share articles, images, etc. URL:
https://drive.google.com/drive/folders/11bSZ5DeHzX1u7gn8TTCrNLyCC3iQUcHm?usp=sharing

The course will move quickly, spanning at least one new method or concept per week.

Prerequisites and languages

Students should have a good grasp of some high-level programming language and should be
comfortable with manipulating arrays and writing functions.

All of my examples will use MATLAB1, which has useful features like logical indexing and
an excellent toolbox of basic image processing functions. See this footnote 2 on MATLAB

1 I’ve put a very short MATLAB tutorial I wrote (“MATLAB tutorial RP.pdf”) in the Google Drive folder.
Be able to do the exercises there. For a longer introduction to MATLAB, see “Essentials of MATLAB
Programming by Stephen J. Chapman, which is on the lab bookshelf, or this guide by Philip Nelson:
https://github.com/NelsonUpenn/PMLS-MATLAB-Guide. It’s a 70 page PDF; you'll have to download the
entire ZIP of the repository. I haven’t read it but I expect that it’s very good.

https://drive.google.com/drive/folders/11bSZ5DeHzX1u7gn8TTCrNLyCC3iQUcHm?usp=sharing
https://github.com/NelsonUpenn/PMLS-MATLAB-Guide

Syllabus 3

characteristics with which one should be familiar. Students are welcome to use other languages,
especially Python, though I may not be able to help with problems as well as with MATLAB.
 On coding: always try to write clear, readable code! Imagine that you’re looking back on
what you wrote years later: Would it make sense? Could you build on it? I strongly recommend the
“PLOS Biol” cited in this footnote3.

Sources

In addition to my own thoughts and past efforts, the syllabus draws heavily from:

• Stanford University, EE 368 / CS 232 (Bernd Girod):
http://www.stanford.edu/class/ee368/index.html; Notes and handouts at
http://www.stanford.edu/class/ee368/handouts.html

• Gonzalez, Woods, & Eddins – Digital Image Processing Using MATLAB (There’s a copy in my lab.)

Topics

Background and Motivations ... 1

Syllabus .. 2

Module 1 Introduction / fundamentals / thresholding ... 4

Module 2 Spatial filtering .. 5

Module 3 The point-spread function, simulated images, noise .. 7

Module 4 Sub-pixel localization ... 9

Module 5 Maximum Likelihood Estimation .. 11

Module 6 Morphological image processing ... 12

Module 7 Image segmentation Part 1 ... 14

Module 8 Image segmentation Part 2 – Watersheds and Level Sets .. 16

Module 9 Machine learning methods (an introduction) ... 18

Module X Particle Linkage ... 19

Module X Image Registration and Template Matching ... 19

Module X De-noising .. 20

Module X Hough transformation .. Error! Bookmark not defined.

2 If you’re not already, you should become familiar with how to make MATLAB code fast – using logical
indexing, avoiding for-loops, preallocating memory, etc. See e.g.
http://www.csc.kth.se/utbildning/kth/kurser/DN2255/ndiff13/matopt.pdf ,
http://web.cecs.pdx.edu/~gerry/MATLAB/programming/performance.html

3 G. Wilson, ..., P. Wilson, Best Practices for Scientific Computing. PLOS Biology. 12, e1001745 (2014).
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://www.stanford.edu/class/ee368/index.html
http://www.stanford.edu/class/ee368/handouts.html
http://www.csc.kth.se/utbildning/kth/kurser/DN2255/ndiff13/matopt.pdf
http://web.cecs.pdx.edu/~gerry/MATLAB/programming/performance.html
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

Module 1 Introduction / fundamentals / thresholding 4

Module 1 Introduction / fundamentals / thresholding

In which we consider basic properties of digital images and apply thresholds to enhance contrast.

COMMENTS: This was originally combined with Module 2, which together was too massive. Many
students will already be familiar with the contents of this module, and so could skip it.

Readings

• Gonzalez, Woods, and Eddins, Chapter 2 (“Fundamentals”). Most of Chp. 2 is available at:
http://www.imageprocessingplace.com/DIPUM-2E/dipum2e_sample_book_material.htm

• [Optional] Video: “Microscopy: Introduction to Digital Images” by Kurt Thorn,
https://www.youtube.com/watch?v=SNl3kRBgW10. Especially the first 10 minutes.

• Read about Otsu’s method for segmentation (Wikipedia, or Section 11.3 of Gonzales et al. –
I’ll scan this.) You needn’t remember the details, just what the general idea is.

Assignment

• Preliminaries. (i) Read the MATLAB tutorial, on logical indexing and for-loops. (ii) Image
arrays are typically unsigned integers; to perform some mathematical operations you may
have to convert them to double precision numbers (e.g. A = double(A)); (iii) Read the
documentation for MATLAB’s imshow function. The syntax imshow(A, []) is often
useful. (If you’re using a different language, read and figure out the equivalent things.)

• 1.1 A puzzle. Run the following (MATLAB). Note that "kiran1.tif" is in the Drive folder.
Image_A = imread('kiran1.tif');

figure; imshow(Image_A, []);

Image_B = Image_A*6.2;

Image_C = Image_B/6.2;

figure; imshow(Image_C, []);
??!! Why is Image_C not the same as Image_A, since multiplying and dividing by 6.2
should give us the same thing we started with? Try this instead:

Image_B = double(Image_A)*6.2;

Image_C = Image_B/6.2;

figure; imshow(Image_C, []);

Why does this work?

• 1.2 Thresholding. Practice thresholding, both global and local, as described in the Gonzalez
et al book. Find some images; try things. Be ready to share an example.

• 1.3 More Thresholding. Use Otsu’s method (graythresh in
MATLAB) to determine the threshold for the images “robert-
mapplethrope-calla-lily-1984.png” and
“MakeUp_RichardPrince_1983_gray.png” (in \Drive). Comment
on the results. Look at the histogram of pixel values for each
image. Also threshold an inset to the Calla Lily photo: “robert-
mapplethrope-calla-lily-1984_CROP.png” – why does this look
different than the thresholded whole image?

Figure 2. Calla Lily -- Robert

Mapplethrope, 1984

http://www.imageprocessingplace.com/DIPUM-2E/dipum2e_sample_book_material.htm
https://www.youtube.com/watch?v=SNl3kRBgW10

Module 2 Spatial filtering 5

Module 2 Spatial filtering

In which we examine various local filters.

COMMENTS: As noted above, this was originally combined with Module 1.

Readings

• Gonzalez, Woods, and Eddins, parts of Chp. 3: Read most of 3.3-3.5. Section 3.3 has a lot of
tips about plotting in MATLAB. Skip 3.3.3-3.3.4. Sections 3.4 and 3.5 are important.

• Note that parts of this chapter are available at:
http://www.imageprocessingplace.com/DIPUM-2E/dipum2e_sample_book_material.htm

Assignment

• 2.1 Convolution and filtering. Make a square array of ones (ones in MATLAB) and use
conv2 to perform a local smoothing of an image by convolving it with the “ones” array. Do
the same using imfilter and show that it gives the same result. Verify by hand (i.e. looking
at intensity values of pixels in your image) that a pixel in the output image is the sum of
pixels in its neighborhood.

• 2.2 Gaussian filter. Create a 2D gaussian filter, i.e. a 2D array in which the value is a
Gaussian function of the distance to the center of the array. In MATLAB, use fspecial;
see the documentation for its parameters. Filter some image using this Gaussian filter.

• 2.3 Median filter. Use medfilt2 to perform a local median filtering of your image.
Compare Gaussian and median filtering, looking especially at sharp edges in your image.

• 2.4 Filtering and thresholding. Apply a Gaussian or median filter to Module 1’s
“MakeUp_RichardPrince_1983_gray.png” photo, and then threshold the image.

• 2.5 High-pass filter. Download “k_icebird_circles_28Mar2014.png” (shown below) from
Dropbox. How can we remove “smudges” and retain lines? Smudges are (roughly)
unchanged by Gaussian smoothing; lines are blurred away. Therefore subtracting a smoothed
image from the original image acts as a “high pass filter,” retaining sharp features like lines.
Create a sharper image like that of “k_icebird_lines_30Mar2014.png” (or better-looking,
since I didn’t spend much time on this) by performing these transformations. You may have
to invert the image – for an 8-bit image “A”, inversion is 255-A, since this takes black to
white and vice versa. You can also try median, instead of Gaussian, filtering. There are many
steps involved in this exercise.

Other things to discuss

• Color images – why we typically don’t want them, and how to deal with RGB images.

If we had more time...

Readings:

• Gonzalez, Woods, and Eddins, Chp. 3-4; Girod EE368, Handout #8

• Merz et al. “HiLo” papers, e.g. Merz and Kim, Journal of Biomedical Optics 15, 016027 (2010)

http://www.imageprocessingplace.com/DIPUM-2E/dipum2e_sample_book_material.htm

Module 2 Spatial filtering 6

Assignment:

• “HiLo” structured illumination: implement and assess...

Figure 3. Ice Bird, by Kiran Parthasarathy (2014).

Module 3 The point-spread function, simulated images, noise 7

Module 3 The point-spread function, simulated images, noise

In what way is an image different from the reality it represents? How is noise manifested, and how
does that limit what we can learn from an image?

COMMENTS: This is a challenging module. To make it self-contained, I should include a simple
introduction to what the point spread function is, and a description of how the point-source
simulation (Ex. 3.2) works. (Of course, I can describe all this in the preceding class.) Note added:
I’ve done this, and also made a video: https://www.youtube.com/watch?v=wK5gqxLk30w

Readings

Just read the parts of these articles that are about simulated image construction:

• Sections 1-3 of Parthasarathy and Small, “Superresolution Localization Methods,” Annu. Rev.
Phys. Chem. 2013. 65:107-125. (http://www.annualreviews.org/doi/abs/10.1146/annurev-physchem-
040513-103735)

• R. J. Ober, S. Ram, E. S. Ward, “Localization Accuracy in Single-Molecule Microscopy,”
Biophys. J. 86, 1185–1200 (2004). https://www.cell.com/biophysj/fulltext/S0006-3495(04)74193-4

• The first few sections of Materials and Methods, page 2 through “noise model” on page 3,
of: M. K. Cheezum, W. F. Walker, W. H. Guilford, “Quantitative comparison of algorithms
for tracking single fluorescent particles,” Biophys J 81, 2378-2388 (2001).
https://www.cell.com/biophysj/fulltext/S0006-3495(01)75884-5

• [Optional] Regarding super-resolution and the challenge of finding objects, you might like
this video, http://www.ibiology.org/ibioseminars/cell-biology/xiaowei-zhuang-part-1.html, which gets
at the methods described in the first section or two of the Parthasarathy and Small paper.

• [Optional, possibly of interest to those who want to know more about optics.] A few pages
on point-spread-functions: Chapter 3, through “circular lenses.” M. Gu, Advanced Optical
Imaging Theory, Springer, 1999. A PDF is posted: “Gu Chapter 3 through 3p2p1

PointSpreadFunction.pdf”. Note that λ here is not the free-space wavelength, but λfree/n.

Figure 4. A TEM image of a slice through a C. elegans embryo. Source: Rick Fetter and Cori Bargmann.

http://www.annualreviews.org/doi/abs/10.1146/annurev-physchem-040513-103735
http://www.annualreviews.org/doi/abs/10.1146/annurev-physchem-040513-103735
https://www.cell.com/biophysj/fulltext/S0006-3495(04)74193-4
https://www.cell.com/biophysj/fulltext/S0006-3495(01)75884-5
http://www.ibiology.org/ibioseminars/cell-biology/xiaowei-zhuang-part-1.html

Module 3 The point-spread function, simulated images, noise 8

Assignment

• 3.1 A worse worm image. Download “fetter_Celegans_cellfig10.jpg” from Dropbox
(\...\Week 2 -- Simulated images and noise), shown above, a transmission electron
micrograph of a slice of a C. elegans embryo, from Rick Fetter and Cori Bargmann (source:
http://www.wormbook.org/chapters/www_intromethodscellbiology/intromethodscellbiology.html). Note the scale
bar. Manipulate this image create an image that shows what the slice would look like if
imaged with visible light (e.g. wavelength 530 nm) rather than electrons. You can write your
own function to calculate a point spread function (recommended) or use psf2d.m. Don’t
worry about simulating noise or pixelation.

• 3.2 Simulated point sources. Use modelimage.m to create several simulated images of
single point sources (e.g. single molecules) for several different signal-to-noise ratios (SNr),
i.e. some number of detected photons4. Understand how modelimage.m works – if there
were more time, I’d ask you to write something like it yourself. For simplicity, place the
centers of all the simulated images at the origin (0,0). Note that the simulated image is the
probability distribution p described e.g. in Parthasarathy and Small Equations 3-4.

• 3.3 Simulated bacteria. Write a version of modelimage.m that simulates images of rod-like
bacteria, rather than images of point sources. Have the length, width, and orientation of a
bacterial cell be input parameters; typical values are 1x3 microns. Alternatively, simulate
some other shape that is relevant to your research, such as “Y”-like junctions between lines
that one might find in images of branching neurons. To help you, I have provided
modelimage_ring.m, which simulates images of rings – you can read and modify this.

• 3.4 The CRLB [Optional]. Use Eqns 1-4 to calculate the Cramer-Rao Lower Bound
(CRLB) for your simulated images, numerically evaluating the second derivative of p with
respect to x. For point sources, by the way, the CRLB can be calculated analytically, but it
can also be determined by brute-force as you’re doing here. If you’re having trouble, the
“answer” is in CRLB_from_modelimage.m.

• 3.5 Limits on accuracy [Optional]. How would you determine the fundamental limit on
accuracy for determination of (i) the orientation angle of a rod-like bacterium, and (ii) the
location of the branching points of an axon. You don’t have to write a program; just
comment on how (or whether) this is possible. In each case, assume one has a fluorescent
bacterium or neuron (i.e. a bright image on a dark background), and that one can isolate a
single bacterium or branch point per image.

Notes for students

• For convolving an image with a (2D) PSF, you should use “conv2” or “imfilter” in
MATLAB. MATLAB has several convolution functions, “conv” for 1D arrays, “conv2” for
2D arrays, “convn” for N-dimensional arrays.

• It’s useful to use “surf” to visualize things like the PSF, for example:
psf = psf2d(100,0.01, 0.9, 0.53); % A PSF with a scale of 0.01

microns/px, NA = 0.9, wavelength 0.53 microns

figure; surf(psf); shading interp

4 As constructed, modelimage.m returns the number of photons detected at each pixel as its output.
The peak brightness is SNr2, and the sum of all the pixel values is the total number of photons.

http://www.wormbook.org/chapters/www_intromethodscellbiology/intromethodscellbiology.html

Module 4 Sub-pixel localization 9

Module 4 Sub-pixel localization

How can we determine the location of a point source (e.g. a single molecule, or a colloidal particle)? In
addition to being the key issue underlying super-resolution microscopy, this is applicable to many
“tracking” problems.

COMMENTS TO MYSELF: Exercise 4.1 could be assigned earlier.

Readings

• Parthasarathy and Small, “Superresolution Localization Methods,” Annu. Rev. Phys. Chem.
2014. 65:107–125. (In the Readings folder.) See also some of the papers it cites.

• [Optional] R. Parthasarathy, Rapid, accurate particle tracking by calculation of radial
symmetry centers. Nat. Methods. 9, 724–726 (2012).

Figure 5. From Parthasarathy and Small (2014), Fig. 2

Assignment

• 4.1 Quantized aggregates. Download “emitters2_33px_dim_hard.png,” a simulated image
of 100 point-emitters arranged on a grid. Each emitter is located at a multiple of (33, 33)
pixels. Imagine that these are images of single-molecules, a GFP-tagged protein, for example.
You want to know: are these proteins monomers, dimers, trimers, ... or a combination of
these? (In other words, is the brightness of the dots quantized, and if so, how many quanta
are there per dot?) Except for the placement on a grid, this is a very “real-world” problem –
in fact, it was inspired by a graduate student talk I attended a few weeks ago! Notes: (1)
You’re only interested in brightness for now, so this problem doesn’t require any of the
localization concepts of this module – in fact, I could have assigned it last week. (2) There
are, of course, background intensities of various sorts which you’ll have to figure out how to

Module 4 Sub-pixel localization 10

deal with. Take the positions (33,33 px) as a given, though. (3) The same image without any
noise, except shot noise, is at “emitters2_33px_dim_hard.png,” and images with brighter
emitters are at “emitters1_33px_bright_{easy, hard}.png” – try your analysis on these, first.

• 4.2 Centroids. Write your own function to use simple centroid finding, i.e. the “center of
mass” of the image, to estimate the location of a point source in an image.

• 4.3 Assessing centroids. Apply your centroid-finding function to a large number (around
1000) of simulated single-particle images (e.g. from modelimage.m), keeping (for now) the
true object location at the center of the simulated images. Calculate the localization error, i.e.
the root-mean-square deviation of the true center from the calculated center. Use a few
different values of SNr of the simulated images, and see how the rms error depends on SNr.
NOTE (added later): Be sure to have a sizeable background intensity, at least 10.

• 4.4 ... continuing... For fixed SNr, simulate images with a few different center positions:
exactly in the middle of the central pixel, 0.25 pixels in x away from the center, and on a
diagonal. Does this affect the accuracy of the centroid algorithm? In what way? (You should
discover why the centroid method is a dangerous one!)

• 4.5 Gaussian fitting. Look at RP’s function to fit a Gaussian to a 2D image using
maximum likelihood estimation (gaussfit2DMLE.m). Apply this to the same images you
analyzed in the preceding exercise. Compare its accuracy and speed of execution (use tic
and toc) with centroid-finding. (Readings in the next module will provide more explanation
of how this fitting works.)

• 4.6 Radial symmetry based localization [Optional, but recommended]. Look at RP’s
function to estimate the center of a particle using a symmetry-based algorithm
(radialcenter.m); see Parthasarathy 2012 for details. Apply this to the same images you
analyzed in the preceding exercises, and again compare accuracy and speed of execution.

• 4.7 Quantized aggregate positions [Optional]. Return to the images of Exercise 4.1. The

positions aren’t exactly at the grid centers – I’ve added jitter of at most ± 0.25 pixels in each
direction. Find the particle locations and compare to the true values tabulated in the csv file
(“emitters2_positions.csv”). The values are given in nanometers, and the scale is 100 nm/px.
[Note: the positions are ordered for the emitters arranged left-to-right, then down. (I should
change this next time. Also, use smaller dhr, to avoid slight offset error. – RP.)] Use whatever
algorithms you like, but use more than 1 and compare.

Module 5 Maximum Likelihood Estimation 11

Module 5 Maximum Likelihood Estimation

In which we learn and apply a bit of statistics.

COMMENTS TO MYSELF: This was added by popular demand! We also discussed the Cramer-Rao
Bound in this module and the one before it. All the exercises are optional and somewhat redundant
with each other; I suggest doing at least one of 5.2-5.4.

Reading

• From Chapter 7 of Steven Kay, “Fundamentals of Statistical Signal Processing”

• Raghu’s, “MLE for fitting a PSF to a signal with Poisson noise,” which describes how this
works. In Dropbox.

Assignment

• 5.1 Gaussian Noise [Optional]. Note that gaussfit2DMLE.m considers a Poisson noise
model – in other words, the likelihood function is a Poisson distribution. How would this
change if we had Gaussian-distributed noise (i.e. the intensity at each pixel is its “true” value
± a Gaussian random number)?

• 5.2 Airy fit [Optional]. Look at RP’s function to fit a Gaussian to a 2D image using
maximum likelihood estimation (gaussfit2DMLE.m). Make a version that instead fits an
Airy function (the actual theoretical form of the point spread function in the image plane).

• 5.3 Bacteria fit [Optional]. Take the simulated bacteria image function that someone wrote
last week and write a function that fits an asymmetric 2D Gaussian function to it, using
maximum likelihood estimation.

• 5.4 Two particle fit [Optional]. Write a function to find the positions of two point objects
in an image by MLE fitting of a sum of two Gaussians. Use RP’s
“modelimage_Npoints.m” to create simulated images of two particles, and see
make_2_particles.m for an example of how to call it. (This also uses the 2D PSF function
of last week.) Consider the usual Poisson-distributed noise. Your function should output x
and y coordinates for each particle, which you can compare to the true positions.

Module 6 Morphological image processing 12

Module 6 Morphological image processing

In which we familiarize ourselves with an immensely useful “toolkit” of image processing operations.

Readings

• Gonzalez, Woods, and Eddins, Chp. 10

• MATLAB’s help documentation on Morphological Filtering

• Girod, Handout #7 (less useful) “7-Morphological_16x9.pdf”

Figure 6. “Crak ! Now, Mes Petits… Pour La France !” by Roy Lichtenstein

Assignment:

• 6.1 Local maxima. Write a function that finds the positions of local intensity maxima in
images using dilation. (As discussed in class, pixels whose value equals the dilated image
value are local maxima.) The output should be a list of positions, and the intensities of those
local maxima.

• 6.2 Smooth leopard spots. Take either the color or gray scale leopard fur photos
“leopard_fur.jpg” or “leopard_fur_gray.jpg” (which I downloaded from
http://www.mindblowingpicture.com, original source unknown), and modify them so that
the dark and light regions aren’t so ragged due to individual hairs, but rather are smoother
and more “blocky.” (Imagine, for example, that your goal is to quantify the area of dark and
light regions on a leopard, or to construct a library of characteristic rosette shapes, for which
the “noise” of individual hairs is irrelevant.) Compare the effects of image opening with
closure of the inverse image (255-image). Also try using “morphological reconstruction”
(MATLAB’s imreconstruct function.) The help documentation isn’t as clear as it should
be about this; explore.

• 6.3 Removing background texture. Take Roy Lichtenstein’s “Crak ! Now, Mes Petits… Pour
La France!” (1963) (roy-lichtenstein-pop-prints-crak.jpg, downloaded from
http://chloejohnston.com/paris-expo-retrospective-on-roy-lichtenstein/), and modify it as

http://www.mindblowingpicture.com/
http://chloejohnston.com/paris-expo-retrospective-on-roy-lichtenstein/

Module 6 Morphological image processing 13

best you can so that (i) all the red dots are removed, leaving only white in these regions, and
(ii) all the dots are replaced with “X”s that connect to other “X”s. For both of these, you’ll
use openings or closings (which are combinations of dilations and erosions). Think about
what structuring elements would be appropriate. You can process the color image, acting on
all channels (Red, Green, Blue) together. You might find it interesting to look the different
color channels. (Note that R, G, B are the three layers of the 3D color image array.)

• 6.4 Plant cells revisited. We briefly looked at a fluorescence image of a piece of a plant
root (“Arabidosis_2a_20X_gfp_tubulin_crop.png”), using morphological image processing
to identify nuclei. Do a better job of this, perhaps with better morphological operations, or
combining these with filtering operations.

• 6.5 Protein aggregates revisited [Optional]. Use your function for finding local maxima
to identify regions of interest in the simulated “protein aggregate” images of Module 4.
Combining this with Exercise 4.7 (“Quantized aggregate positions”), you should have a
complete set of functions that takes an image, finds objects, and precisely locates the
emitters – a very useful package!

Module 7 Image segmentation Part 1 14

Module 7 Image segmentation Part 1

One of the most important, and hardest, problems: what are the “objects” in an image, and how can
we identify them – not just their centers, but their size and shape?

Readings

• Gonzalez, Woods, and Eddins, Chp. 11 (through 11.2; note that we previously read 11.3, on
Thresholding). The book discusses lots of different edge detection algorithms; don’t pay
attention to the details, or memorize these – get the general idea, and use this as a reference.

• On Hough transformation of circles: Pedersen Circular Hough Transform 2007.pdf, and
http://basic-eng.blogspot.com/2006/02/hough-transform-for-circle-detection.html

Assignment

• 7.1 Edges. Find some images, and practice using the edge detection functions described in
Gonzalez, Woods, and Eddins.

• 7.2 Cell edges. See the image of cultured epithelial cells “rptec-sa7k-cells.jpg” (from
https://www.sigmaaldrich.com/technical-documents/articles/biology/rptec-drug-
models.html). Apply various edge detection methods and see how well you can highlight
(threshold) the edges of the cells. Crop part of the image, if you want. You may find it useful
to apply the “hy” etc. gradient arrays in my “sobelN.m,” which makes Sobel filters of larger
sizes than MATLAB’s defaults; the header comments give an example of how to use this
function to calculate gradient magnitudes. Don’t spend much time on this.

• 7.3 Hough Transformation for Circles. The Gonzalez et al. book describes a Hough
transformation for detecting lines. Another clever and common use of a (different) Hough
transformation is for detecting circles and locating their centers. Note our sketch of how this
worked at our July 1 Zoom session, and see the reading noted above.
(i) Either write your own function that implements a Hough transformation, or use my
“houghring_rp.m” function. Your function should take an image and a radius value as the
inputs, and output the circle’s center and the “parameter-space” image (“HM2” in my
function). Apply Hough transformations to whatever images you want, or to the
“simRing_{1,2,3}.png” images that I have provided, for which R = 25 pixels. What does the
parameter-space image look like when you input the values of R other than the “correct”
value of 25? See Hough_transformation_snippet_RP5July2020.m for a snippet of
code illustrating how to use houghring_rp.m
(ii) As discussed, the Hough transform is slow! (Why?) Can you process your image to make
it faster? Try it, or look at the code in my “houghring_rp.m” function.
(iii) I’ve put three simulated rings with R = 25 pixels in the image
“simRing_threeRings.png” . Using a Hough transformation, find the ring centers. To the
nearest pixel, you should find x = [70 190 301]; y = [280 215 140]. More precisely, the “true”
values are x = [0.2, -0.3, 0.4]; y = [-0.1, 0.1, -0.3] pixels, relative to the above center pixels.

• 7.4 Yeast colonies, part (i). [Optional; useful if you want to get a head start on the next
module.] See the image of yeast colonies on a petri dish, “dsc_0357.jpg” (from
http://sciencebrewer.com/tag/brett-agar/). The overall goal (continuing to next week) will
be to write a function that, with a few user-input parameters returns the location of each
colony, its size (pixels), and eccentricity (a flag for potential errors in detection). To start:

https://www.sigmaaldrich.com/technical-documents/articles/biology/rptec-drug-models.html
https://www.sigmaaldrich.com/technical-documents/articles/biology/rptec-drug-models.html
http://sciencebrewer.com/tag/brett-agar/

Module 7 Image segmentation Part 1 15

Apply whatever filtering seems appropriate, and threshold to make a binary image that
highlights the colonies. (Colonies = 1, background = 0.)

• 7.4 Yeast colonies, part (ii). In your filtered image, find and display these maxima using
MATLAB’s “imregionalmax” function or by using dilation to identify maxima, as in the
last module. (Use “find” to get the coordinates of the local maxima and plot a red ‘x’ at each
location.) You should find far too many maxima; try combining with the thresholded image,
to only keep the “bright” maxima.

• 7.4 Yeast colonies, part (iii). Apply morphological operations to the original or the
thresholded image that help separate colonies that are touching each other. (Don’t expect
great improvements.)

• 7.4 Yeast colonies, part (iv). Use regionprops to get statistics on the various regions –
i.e. connected above-threshold pixels. Calculate each region’s area and eccentricity, and
whatever else you want. Make a plot of eccentricity vs. log(Area). (We’ll see regionprops
more next week. There’s a Python version in skimage.measure.)

Module 8 Image segmentation Part 2 – Watershed Segmentation 16

Module 8 Image segmentation Part 2 – Watershed Segmentation

Continuing the topic of image segmentation, we’ll move on to “region based” methods, especially
watershed segmentation.

Readings

• Gonzalez, Woods, and Eddins, Chp. 11 (11.4-11.5)

• MATLAB’s documentation has a good description of marker-controlled segmentation (also
available at https://www.mathworks.com/help/images/marker-controlled-watershed-
segmentation.html). The specific details aren’t important, but the general ideas of using
morphologically transformed regions as foreground markers and distance transforms as
background markers are useful.

Assignment

• 8.1 Yeast colonies. Do Exercises 7.4 (i) and (ii) if you haven’t already. You’ll filter and
threshold an image of yeast colonies on a petri dish, “dsc_0357.jpg,” to get a binary image
that provides a crude segmentation of the colonies, and to find local maxima that will serve
as seeds for watershed segmentation in a later exercise. It may take some experimentation to
come up with good filters; keep in mind both high- and low- pass filtering. (Recall what’s
useful about each.) For all of these exercises, use a grayscale version of the image, averaging
over color channels, or just pick one channel to analyze.

• 8.2 Watershed without markers. Calculate and display the gradient magnitude of the yeast
colony image. Apply watershed segmentation and visualize the results. It should look
terrible. To make sure you can move on to the interesting part, here some code that does all
this (MATLAB):

% Gradient magnitude; “im” is the image

im = double(im);

im = mean(im,3); % average over color channels

hy = sobelN(5); % 5 px Sobel filter

hx = hy';

im_gx = imfilter(im, hx, 'replicate');

im_gy = imfilter(im, hy, 'replicate');

im_gradmag = sqrt(im_gx.^2 + im_gx.^2);

figure('name', 'Gradient magnitude'); imshow(im_gradmag, []);

% Watershed segmentation

watershed_im = watershed(im_gradmag);

% This makes each object a different RGB color, for visualization

watershed_rgb = label2rgb(watershed_im,'jet',[.5 .5 .5]);

figure('name', 'Watershed'); imshow(watershed_rgb,[])

• 8.3 Watershed with markers. Using the local maxima as foreground markers (i.e. a binary
image that’s “1” at the local maxima), whatever seems useful as background markers, and the
gradient magnitude as the “topography,” use MATLAB’s watershed segmentation function
to segment the image. See if colonies that touch each other can be recognized as separate
objects! Try different markers, such as combining the local maxima with the thresholded
image, dilating/eroding, etc. Just assess the quality of the segmentation by eye.

https://www.mathworks.com/help/images/marker-controlled-watershed-segmentation.html
https://www.mathworks.com/help/images/marker-controlled-watershed-segmentation.html

Module 8 Image segmentation Part 2 – Watershed Segmentation 17

• 8.4 Snakes! Try applying active contour segmentation to your (filtered) image (function:
“activecontour” in MATLAB). Note that it requires two arguments, the image and the
initial guess for the contours. This initial guess should be something that is clearly smaller
than or larger than the true objects – for example, an eroded or dilated binary thresholded
image. You can play around with parameters, but don’t spend much time on this; you’ll
probably find that it’s slow!

• 8.5 Region properties. As in 7.4 part (iv), use regionprops to get statistics on the various
regions you’ve found from segmentation. Calculate each region’s area and eccentricity, and
whatever else you want. Make a plot of eccentricity vs. log(Area). (There’s a Python version
in skimage.measure.) Optional: Get rid of objects whose properties imply that they’re not
colonies (e.g. high eccentricity).

• 8.6 Other images. How well does what you’ve done work on other images? Try some
images of bacterial colonies on plates (from my lab) in \Images\Bacteria on plates\ . Note
that all these images are quite easy compared to a lot of segmentation tasks! Try also
something much more difficult: the image of zebrafish bone forming cells (Chuck Kimmel’s
lab) that we saw in class: “Jamie_Zfish_55hpf1_w1YokoRFP_im30_slice24.png”. (Or some
other image you find.) Imagine writing something to accurately segment hundreds of these...

• 8.7 A more general function. [Optional] Combining all of the above things, write a function
that has minimal user input (e.g. specifying the circle containing the dish, specifying a max.
and min. colony size, ...), that takes an image of plated colonies as input, that performs
segmentation and rejects objects that are too large/small/eccentric, and outputs an image of
the found colonies together with lists of colony positions and characteristics.
Congratulations: you’ve automated the tedious task of colony counting!

Module 9 Machine learning methods (an introduction) 18

Module 9 Machine learning methods (an introduction)

Can we get the computer to do our thinking for us? How? A *very limited* introduction.

Readings

• Hsu et al. “A Practical Guide to Support Vector Classification” –
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

• Some comments on learning about machine learning, with links to Caltech’s and other
courses (https://eighteenthelephant.com/2015/10/23/learning-about-machine-learning-
part-i/, and part ii)

• [optional] On neural networks – “A high-bias, low-variance introduction to Machine
Learning for physicists” by Mehta et al. (https://arxiv.org/abs/1803.08823)

Assignment:

• 9.1 Yeast colonies and Support Vector Machines: Training data. Consider the early part
of your Module 8 exercises, in which you identified regions using filtering and thresholding,
and determined properties of those regions (area, eccentricity, etc.). Here, we’ll use a Support
Vector Machine to classify these regions as “colonies” / “not colonies,” or “single colonies”
/ “not single colonies.” First, let’s make the training data. Write a program that allows you to
click on a point in the image, that finds the object closest to where you’ve clicked, and that
adds that object to a list of “colonies;” and the same for a list of “not colonies.” Make lists
of about 10 objects each.

• 9.2 Support Vector Machines. There are lots of toolboxes for SVMs. I’ve often used
libSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm/, which has libraries for MATLAB,
Python, etc. MATLAB has its own SVM functions which (at least a few years ago) were very
slow, but you might like to try these. Look into the syntax to use, to construct arrays of
features and classifiers for training data.

• 9.3 Yeast colonies and Support Vector Machines: Classifying! Support vectors in hand,
have your program classify all the remaining objects in your image. Plot green and red “X”s
on colonies and not-colonies, and just assess “by eye” how good it seems. Also, apply the
SVM to a new image, e.g. the bacterial colonies in Exercise 8.6.

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://eighteenthelephant.com/2015/10/23/learning-about-machine-learning-part-i/
https://eighteenthelephant.com/2015/10/23/learning-about-machine-learning-part-i/
https://arxiv.org/abs/1803.08823
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Module X Particle Linkage 19

Module X Particle Linkage

How can we link together images of objects across frames to form accurate trajectories?

COMMENTS TO MYSELF: We’ve always skipped this. It’s not really image analysis per se, and in
practice I’ve never moved beyond simple methods. Could make a nice project for someone.

Readings

• N. Chenouard et al., Objective comparison of particle tracking methods, Nat. Methods 11,
281–289 (2014) [Chenouard meijering comparison tracking methods 2014.pdf]

• “Inference in particle tracking experiments by passing messages between images,” Chertkov

et al., PNAS (2010) 107: 7663–7668 [chertkov zdeborova particle tracking messages 2010.pdf]

Assignment

• Read the Chenouard et al. paper and select some of its references (coordinate with others).
Describe one or more linkage algorithms to the rest of the group.

Module X Image Registration and Template Matching

How can we align images of the same object that may be distorted or rotated relative to each other?
How can we find objects in images by template matching?.

COMMENTS TO MYSELF: This is neither as interesting nor as useful as most of the other topics. We
covered it in 2014, but not in other years. The assignments need to be fleshed out. Maybe detecting
fraud in images?

Readings

• Gonzalez, Woods, and Eddins, Chapter 6.

• “Geometric Transformation, Spatial Referencing, and Image Registration” in MATLAB’s
documentation.

• (if useful) “Fitzpatrick Hill Maurer Image Registration ch8.pdf”

• On Template Matching: Girod, Handout #9, 10 (“9-TemplateMatching_16x9.pdf”)

• On Template Matching: Gonzalez, Woods, and Eddins, Chapter 13. This gets complicated
quickly, but the key parts are near the beginning – e.g. using cross-correlation to match
templates to images.

Assignment

• Find / take some images and apply image registration methods to them; follow along with
Chapter 6 of Gonzalez, Woods, and Eddins.

Module X De-noising 20

• Take overlapping light sheet microscope images of gut regions and overlap them,
interpolating intensity in some way. [Should note for next time: load these as an array, and
note that the true scale is far less than 2^16.]

• Find a picture with some repeating pattern (e.g. widows in a building). Use cross-correlation
with some template you create to find all the repeating elements.

Module X De-noising

Can we remove noise from images? How? Why?

COMMENTS TO MYSELF: We’ve always skipped this. It’s interesting, but not as important as other
topics. There are interesting questions about whether de-noising is pointless or not.

Readings

• Boulanger et al., “Patch-based non-local functional for denoising fluorescence microscopy
image sequences”

• Old papers...

Assignment

Write code to implement this.

